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Fast ion transport predictions for whole device 
modeling are needed for fusion plasmas

• Fully nonlinear modeling of fast ion interaction with 
Alfvénic modes in a realistic tokamak is numerically 
expensive

• Reduced (but still realistic) modeling can be exploited if 
linear mode properties do not change faster than the 
equilibrium, e. g.,
– eigenstructure
– resonance condition 

• Simulations need to cope with the simultaneous 
excitation of multiple unstable Alfvénic instabilities

• Reduced models need to be strongly verified 

comparisons show only slight differences from the results
reported here. In general, ~Γ can be a time-dependent
quantity as fast ions diffuse in space and energy. Here,
we take h∇ · ~Γi to be the time average of the half period
when the beam is either on or off, as indicated in Fig. 2(c).
In Fig. 3(a), the SSNPA diagnostic shows that transport

suddenly begins to increase above a threshold of Pthresh ¼
3.6" 0.5 MW beam power, while in Fig. 3(b), the neutron
emission indicates Pthresh ¼ 2.9" 0.4 MW. In order to
understand what sets the transport threshold, we use a
procedure similar to the one in Ref. [16] to examine the
interaction of the modulated population of particles with
the AEs excited in the experiment. The linear ideal
magnetohydrodynamic code NOVA [17] is used to compute
the eigenmode frequencies and structures for DIII-D
discharge no. 159243 at t ¼ 790 ms, which had 6.4 MW
of tangential beam injection. The amplitudes of eight
RSAEs and three TAEs are scaled to match experimental
values based on ECE temperature fluctuation measure-
ments for five discharges in the same power scan at similar
time slices when qmin ∼ 2.9 [18]. The TRANSP code [19]
calculates the classical particle distribution function of the
modulated beam. Next, the ORBIT algorithm described in
Ref. [20] is used to determine which portions of fast-ion
phase space have good Kolmogorov-Arnold-Moser (KAM)
surfaces and which orbits reside in islands and stochastic
regions formed by wave-particle resonances. Figure 4
shows the results of this analysis for E ¼ 70 keV particles
in the portion of phase space diagnosed by the SSNPA.
Here, μ is magnetic moment, B0 is the on-axis magnetic
field, Pζ is the canonical toroidal angular momentum,
and Ψw is the poloidal magnetic flux at the last closed

flux surface. At 3.7 MW, good KAM surfaces are preserved
throughout the region diagnosed by the SSNPA, so
negligible transport is expected. At 6.4 MW, nearly all
surfaces are destroyed, so large transport is expected.
These theoretical results are in good agreement with

experiment. In Fig. 3(a), the stochasticity, or fraction of
SSNPA phase space with broken surfaces after 15 toroidal
transits (4 μs), is plotted beside the experimental data. The
experimental threshold for stiff transport coincides with the
theoretical points, confirming that the onset of stochasticity
is responsible for the jump in transport. Additional obser-
vations support this conclusion. (1) The threshold for
appreciable transport is lower for diagnostics with broad
sensitivity in phase space [such as the neutrons in Fig. 3(b)]
than for diagnostics with narrow sensitivity (such as the
SSNPA). Stochastic orbits do exist in lower-power dis-
charges in some portions of phase space, so a diagnostic
like the neutron detector that encompasses the entire region
of phase space shown in Fig. 4 observes enhanced transport
at low-power levels. (2) A power scan using perpendicular
beams enhances the wave-particle resonances in the
trapped portion of phase space. Diagnostics that are
sensitive to trapped particles measure a lower-power thresh-
old for this perpendicular power scan, while diagnostics
that are sensitive to passing particles measure a lower-
power threshold in the tangential power scan.
The FIDA diagnostic provides profile measurements of

the copassing fast-ion population. Figure 5 shows that
transport of the modulated beam particles is localized to the
midcore radii, corresponding to the location of multiple
RSAEs. These observations are consistent with critical-
gradient behavior in that the modulated beam particles act
to perturb the driving gradient, and the particles are
consequently redistributed so that the gradient is main-
tained below the critical value for mode stability. The
measured divergence of flux is also nonzero near the
magnetic axis, which may be due to the sampling of a
portion of trapped fast ions whose large orbit size allows
interaction with midcore AEs. While the gyroradius
of a 70 keV fast ion near qmin is ∼2.3 cm, the width of

Fast-Ion Transport

FIG. 3. Time-averaged divergence of modulated flux, i.e.,
transport, inferred from the (a) SSNPA and (b) neutron emission
for the first half (triangles pointing up) and second half (triangles
pointing down) of the modulation period. Error bars are the
standard error of the time average over the half period. The onset
of transport corresponds to the theoretical level of stochasticity
[solid squares in (a)].

FIG. 4. ORBIT analysis shows that particle orbits in the indicated
SSNPA diagnostic region of sensitivity are stochastic in the
6.4 MW case but not stochastic in the 3.7 MW case.
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DIII-D critical gradient 
experiments
Stiff, stochastic fast ion transport 
gives credence in using a quasilinear 
approach C. Collins et al, PRL 2016

DIII-D Friday Science Meeting, April 19th, 2019 Vinícius Duarte, “Realistic 2D quasilinear modeling of fast ion relaxation” 2



Outline

• The Resonance Broadened Quasilinear (RBQ) model 

• RBQ1D verification exercises

• RBQ interfacing with TRANSP

• Ongoing extension to 2D
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The relevant diffusion path for particles resonating with 
a low-frequency Alfvénic mode is nearly 1D

Equilibrium – 3 invariants

Particle trajectory is one point 
in                     space   

In the presence of low-frequency 
perturbations:

• the invariance of     is roughly 
maintained;

• the invariances of     and       are broken
• if the ansatz holds, a new 

invariant emerges: 
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For low-frequency waves, i.e., !/!c ⌧ 1, the modes are not able to have cyclotron reso-

nances, which implies l = 0. In this case, dµ
dt

is identically zero:

µ = const ,

and a new constraint for the perturbed single particle dynamics arises:

E 0
= E + !P'/n . (1.1)

Resonant particle motion occurs along paths of constant value of E 0 as long as the ansatz

ei(�n'�!t) holds.

1.6 Operator @/@I in (E , P', µ) space

In this section the independent variables are changed from (Jp, P', µ) to (E , P', µ). The

former is the set of actions associated to the guiding center Langrangian while the later is
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to be represented in terms of NOVA variables and it has an
explicit poloidal harmonic dependence.

The paper is organized as follows. In Sec. II we present
the formulation of the quadratic form and the perturbation
technique. Results of benchmarking the new version of
NOVA-K and the study of FOW and FLR effects on the TAE
stability are given in Sec. III. The summary is presented in
Sec. IV.

II. FORMULATION
A. Particle drift orbits

We present the approach to be used in this paper to
identify particle and its drift orbit, where we will follow Ref.
9. We describe the particle guiding center orbit in terms of
adiabatic constants of motion,

E5v2/2,

m5E' /B , ~1!

Pw5zc~R ,Z !/Mc2s iA2EA12mB/E~RBw /B !,

where z and M are the charge and the mass of a particle, R is
the plasma major radius, Z is the coordinate along the main
tori axis, b5B/B , B is the equilibrium magnetic field, w is
the toroidal angle, c is the poloidal magnetic flux, and s i is
the particle parallel velocity sign, which equals 1 if the par-
ticle parallel velocity is directed the same way as the plasma
current and equals 21 otherwise. We illustrate the choice of
variables in Fig. 1. Shown are two types of fast particle or-
bits for the equilibrium, which corresponds to DT shot
#103101 at 2.92 s in tokamak fusion test reactor ~TFTR!
experiments, where the TAE mode activity was seen.10,11
Plasma parameters are taken from the TRANSP analyzing
code12 and will be given in Sec. III. In the adopted approach
the drift orbit is represented by the curve Pw5const. Parts of
the curve Pw5const positioned above the magnetic flux in
the midplane c(R ,Z50) correspond to the particle guiding

center orbit in the plasma. All the classes of particle orbits
may be obtained by looking for the intersection of particle
orbit given as zc(R ,Z)/Mc5Pw1s iA2EA12mB/E
3(RBw /B) and the magnetic flux at the tokamak midplane
c(R ,Z50) ~see Ref. 9 for details!.

Particle guiding center velocity can be expressed in the
form13

drc
dt 5v ib1vc

21~v i
2b3k1mb3πB !

5v iFb2
v i

vc
~bπ3b!bG1

v i
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where k is the magnetic field curvature, rc5r1v3b/vc is
the gyrocenter, and particle velocity components need to be
taken as a function of space coordinates. We present the
equilibrium magnetic field in a general form,

B5RBwπw1πw3πc , ~3!

where Bw is the toroidal component of the equilibrium mag-
netic field. Using Eqs. ~1!–~3! one can obtain the following
form for the particle guiding center velocity:

drc
dt 5

v i

vcRBw
b3πPw1

v iB
RBw

πw

uπwu2 . ~4!

Guiding center velocity in the form of Eq. ~4! differs from
that of Ref. 9 as it includes all components of particle drift
motion in a tokamak rather than only its toroidal projection.

B. Drift kinetic equation
To derive the fast particle response to low-n MHD per-

turbations, such as TAE modes, and to include FLR effects,
we will use the solution to the drift kinetic equation obtained
in Ref. 14, where we will understand the arguments of
Bessel functions in the form v'π' /vc , which operates on
the perturbed quantities. This is justified for the most practi-
cal cases with TAE toroidal mode numbers n>2, when r
.π'

21 . Thus, the perturbed distribution function for fast
ions can be expressed in the form

f5g1
A3b
B πF1

z
M FfFE81S f2

v i

c A i D Fm8

B G
2

z
MB Fm8 FJ0S fc2

v i

c A icD1
Mm

z ~J01J2!B icG , ~5!

where subscript c means that the corresponding value is
taken at the particle gyrocenter rc , F is the equilibrium par-
ticle distribution function, Fx8[]F/]x , f and A are the elec-
trostatic and the vector potentials, respectively, and Jl is the
lth order Bessel function. In this paper, we will use the tra-
ditional representation of the perturbed quantities,

A~r,t !5e2ivt(
m

Am~c!eiSm,

Sm5mu2nw , ~6!

FIG. 1. Passing ~a! and trapped ~b! particle orbits represented in both c ,R
and Z ,R planes for TFTR shot # 103101 at 2.92 s, when TAE was observed.
Curve c(R ,Z50) is equivalent to the midplane.
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CHAPTER 2. NONLINEAR CHIRPING AND THE QUASILINEAR APPLICABILITY 55

2.6.2 Phase space averaging

The average over phase space is taken along the surfaces over which the resonance

condition is satisfied, for different poloidal bounce harmonics. The phase space volume

elements are weighted in accord to their relative contribution to the overall growth rate.

Specifically, we evaluate

(...) =

´
(...)Qd�´
Qd�

,

where Q =

1
!

P

j

hqEPe · vi2 @f
@I
� (⌦j) is the contribution to the growth rate, �L, from a given

phase space location that satifies ⌦j (E , P', µ) = 0. In the present study, the phase-space

averages are taken over several harmonics of a given mode. This averaging technique was

previously used to predict the TAE amplitude saturation in TFTR experiments [71].

2.7 Comparison with simplified bump-on-tail prediction

as evaluated by NOVA

In this thesis, we show that a previous approach that attempted to simplify the needed

input that the theory requires [9] is insightful but limited for making accurate predictions

of experimental scenarios. Here we employ a generalized formulation and show that its pre-

dictions are in accordance with observations. This analysis reveals that micro-turbulence,

even while producing no observable effect on the beam ion transport, provides the vital

mechanism in determining which non-linear regime is more likely for a mode as well as the

mode transition from one regime to the other, as parameters of an experiment change in

1

Let us start with the collisionless cubic equation

dA(t)

dt
= A(t)�

Z t/2

0
dzz2A(t� z)

Z t�2z

0
dyA(t� z � y)A⇤(t� 2z � y)

Let us change the integration variable of the inner integral from y to u, where u = t� z � y. We keep z as

the integration variable of the outer integral:

dA(t)

dt
= A(t)�

Z t/2

0
dzz2A(t� z)

Z z

0
duA(u)A⇤(u� z)

Assuming the special case in which A is real and that A can be either an even or an odd function, we can

write

dA(t)

dt
= A(t)±

Z t/2

0
dzz2A(t� z)

Z z

0
duA(u)A(z � u)

| {z }
A(z)⇤A(z)

where ± refers to the odd/even choice. Note that under the above circumstances, the inner integral can

be written as a convolution (represented by *), which suggests that an integral transform can be useful in

solving the equation. We can then find a second convolution, in case t/2 in the upper limit of integration

can be somehow replaced by t (perhaps by means of a redefinition of the function A and the time):

dA(t)

dt
= A(t)±

Z t

0
dzz2A(z) ⇤A(z)A(t� z) =

⇥
t2A(t) ⇤A(t)

⇤
⇤A(t)

Taking the Laplace transform of the equation above gives

L
⇢
dA(t)

dt

�
= sF (s)�A(0) = F (s)± L

�
t2A(t) ⇤A(t)

 
L{A(t)} = ±F (s)(�1)2

d2

ds2
[F (s)]2

where L{A(t)} = F (s). Then, we get the following differential equation

sF �A(0) = F ± 2F
⇥
F 02 + FF 00⇤

Taking A(0) = 0 and choosing the positive sign, we find

F (s) =

r
s3

6
� s2

2
+ c1s+ c2

where c1, c2 are constants. The solution A(t) would then be given by the inverse Laplace transform of F (s),
taken along a Bromwich contour.

e�i(n'+!t)

Particle motion is 1D upon 
single mode interaction
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Resonance broadened quasilinear (RBQ) model:
motivation for the 2D generalization

• Designed to address both regimes of isolated and overlapping resonances
– the fast ion distribution function relaxes while self-consistently evolving the amplitude of modes
– interfaced with linear ideal/kinetic codes, NOVA/NOVA-K, which provide eigenstructures, damping 

rates and wave-particle interaction matrices for resonances in the constant of motion space
BERK et al. 
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H. Berk, B. Breizman, J. Fitzpatrick, and H. 
Wong, Nucl. Fusion 35, 1661 (1995). 

The ultimate goal of 
the SciDAC RBQ 
work is to evolve 
particle distribution 
in 2D in whole-
device modeling
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Formulation in action and angle variables2,3

• Diffusion equation:

• Mode amplitude evolution:

Broadening is the platform that allows for momentum and energy exchange between 
particles and waves:

1Berk, Breizman, Fitzpatrick and Wong, NF 1995.
2Kaufman PoF, JPP 1972 (no broadening due to growth rate!). 

3Gorelenkov, Duarte, Podestà and Berk, NF 2018.

CHAPTER 5. 1D SLANTED RBQ MODEL 104

Far from marginal stability

For this case �⌦ ⇡ a!b. The expected saturation level from analytical theory is

!b/⌫scatt ⌧ 1 leads to !b ' ⌫scatt

⇣

�L
�d

� 1
⌘1/4

which, if substituted in (5.3) gives

c = 2.71

5.1.3 QL equations with a broadened coefficient

Using (1.2), the 1D QL equations written in NOVA notation, are
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�

G⇤
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C [f ] is a collisional operator acting on the distribution function. The equation for the

amplitude of each mode can be written formally without the explicit contributions from

other modes. The amplitudes satisfy the equation from linear theory and can be written as

dC2
n(t)

dt
= 2 (�L,n � �d,n)C

2
n(t) (5.4)

where �L,n is the linear growth of the mode and �d,n is the wave damping rate in the

absence of an instability source. �L,↵ is given by (4.1). The broadening of the resonance
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trajectory, which motivates the variable change Jp ! E (Jp, P', µ) = E (J1, J2, J3). The

following operator is intended to act on a function f = f (Jp, P', µ):

@

@I
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@

@J1
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@

@J2
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@

@J3

Now the above operator is rewritten to act on a function g = g (E , P', µ)3:
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E , being the Hamiltonian of the unperturbed motion, satisfies !1 = @E
@J1

, !2 = @E
@J2

and

!3 =
@E
@J3

, which are the poloidal, toroidal and gyro frequencies, respectively. For resonant

particles l1!1 + l2!2 + l3!3 is equal to the mode frequency !. l2 is minus the toroidal mode

number, �n, and l3 needs to be taken zero for low-frequency modes, as compared to the

cyclotron resonance. Consequently,
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where P 0
' = P' + nE/! and E 0 = E + !P'/n. Another way of deriving the above operator

is to project the gradient
⇣

@
@E ,

@
@P'

, @
@µ

⌘

onto the path that preserves condition (1.1), which

is given by (!,�n, 0). Consequently, @
@I

= ! @
@E �n @

@P'
. Therefore, it may be useful to make

a transformation (P', E) ! (I (P', E) , E 0 (P', E)) where I = �P'/n and E 0 = E + !P'/n.
3Note that this transformation involves the use of a new basis which is not orthogonal, although the

variables are linearly independent. After the transformation is made, E is to be treated as an independent
variable not related to P

'

and µ. The transformation can be formally understood as if J
p

were the new
Hamiltonian.

-
_

Broadened delta, a function of 

eigenstucture
information

N.N. Gorelenkov et al

3

Ωl (J) ≡ l · ωAI (J) (6)

The QL theory assumes that the mode amplitudes remain 
small and therefore the theoretical coefficients are computed 
based on the unperturbed orbits. In conventional QL theory, 
particles are considered to be in resonance only if they exactly 
satisfy the wave resonance condition. This implies that reso-
nant particles can only diffuse over the resonant point, which 
is clearly an ill-posed problem. Nonlinear effects, however, 
naturally broaden the resonances. Dupree [22] realized that 
the turbulent spectrum contributes to diffuse particle orbits 
away from their original unperturbed trajectories. In the RBQ 
model the resonant island width is incorporated into the QL 
theory in such a way that it reproduces the expected satur-
ation levels for single modes from analytic theory [24]. The 
broadening itself introduces an additional nonlinearity into 
the problem. The resonance line is substituted by the broad-
ening function F  to replace the resonance delta function over 
the broadened width (see equation (8) and next section). The 
broadening function becomes a more realistic platform that 
allows the momentum and energy exchange between particles 
and waves [13].

In the RBQ model the window width is determined by the 
sum of three terms:

 1.  The net growth rate (γk ≡ γL,k + γd,k, where γL,k  and γd,k 
are the linear (positive) growth and (negative) damping 
rates) as expected for the wave treated by ordinary 
quasi-linear theory. As long as the imaginary part of 
the frequency is accounted for, the diffusion coefficient 
naturally contains the Lorentzian (Cauchy) distribution 
which has the property of having the characteristic 
height of 1/γk  and the full width equal to 2γk  at half 
maximum. The broadening based on γk  collapses to a 
delta function when γk → 0, i.e. when the mode reaches 
satur ation:

πδ [Ωl (J)− ωk] →
γk ̸=0

γk

(Ωl (J)− ωk)
2 + γ2

k

.

 2.  The separatrix width expected for a wave treated by 
single mode theory. In the phase space, particles that 
exchange energy with the mode are trapped by the 
separatrix of width 4ωb,l [13]. Each particle satisfy a 
nonlinear pendulum equation with a given bounce trap-
ping frequency ωb,l (defined in equation 10) which leads 
to the phase mixing for a single wave.

 3.  The effective collisional frequency νscatt,l (as defined in 
[25, 26], see equation (9)) since collisions imply that 
particles are redistributed, being kicked in and out of the 
separatrix, which leads to particle decorrelating from the 
resonance. This increases the effective range of the reso-
nance region since more particles are allowed to interact 
with the mode via the resonant platform. The value of 
νscatt,l is sensitive to the choice of the mode numbers and 
frequency.

The resonances are given by (see equation (6)) the value of 
the resonance frequency:

Ωl (E , Pϕ,µ) = nk ⟨ωϕ (E , Pϕ,µ)⟩ − p ⟨ωθ (E , Pϕ,µ)⟩ = ωk,
 (7)

where p is an integer, ωϕ ≡ φ̇ and ωθ ≡ θ̇ are the toroidal 
and poloidal precession frequency contributions. Here the 
Ωl  specifies the integration path in NOVA-K formulation as 
described in [27] and in the appendix A. It has been found [14, 
15] that the broadening width is

△Ωl (E , Pϕ,µ) = aωb,l + b |γk| {= |γL,k + γd,k|}+ cνscatt,l,
 (8)
The numerical constants a, b and c follow from verification 
with analytic theory for the modal problem of single mode 
dynamics (see appendix B). The scattering and the bounce fre-
quencies can be expressed as follows [26]:

νscatt,l ≃ ν⊥R2
〈

v2 − v2
∥

〉( ∂Ωl

∂Pϕ

∣∣∣∣
E ’

)2

, (9)

ν⊥ is the 90◦ pitch-angle scattering rate, ⟨⟩ is the drift orbit 
average, and

ωb,l =

∣∣∣∣∣2Ck(t)Vl(Ir)l ·
∂Ωl

∂J

∣∣∣∣
J=Jr

∣∣∣∣∣

1/2

, (10)

where the subscript r denotes the resonant location in the 
phase space. 

3. RBQ system of equations

For the single mode WPI case, the particle diffusion can be 
projected onto the most relevant 1D path for EP dynamics in 
the phase space which occurs for the constant values of the 
magnetic moment µ and E ′. Thus it is convenient to define 
the following differential operator that is essentially a gradient 
operator projected onto this path:

∂

∂I
≡ l · ∂

∂J
= ω

∂

∂E − n
∂

∂Pϕ
= ω

∂

∂E

∣∣∣∣
P′
ϕ

= −n
∂

∂Pϕ

∣∣∣∣
E′

. 

(11)

Then, the 1D RBQ equations can be written as

∂f
∂t

=
∂

∂I

⎛

⎝
∑

nk ,p,m,m′

D(I; t)

⎞

⎠ ∂f
∂I

+

(∣∣∣∣
∂Ωl

∂I

∣∣∣∣
Ir

)−2

ν3
scatt,l

∂2( f − f0)
∂I2

 (12)

where

D(I; t) = πC2
k (t) E2 Fl (I − Ir)∣∣∣∣

∂Ωl

∂I

∣∣∣∣
G∗

m′pGmp,
 (13)

and the matrices G are defined in appendix A.
The growth rate is given by (see appendix A)
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Physics-based determination of the 
window function is pending
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which, when substituted in (2) leads to

a = 2.7.

AN ANALYTICAL APPROACH FOR
CALCULATING THE WINDOW FUNCTION

FOR QUASILINEAR RELAXATION

Assuming that the same kinetic interaction is to
be modeled by a quasilinear framework, such as
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Outline

• The Resonance Broaded Quasilinear (RBQ) model 

• RBQ1D verification exercises

• RBQ interfacing with TRANSP

• Ongoing extension to 2D
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Verification: determining the parametric dependencies of the 
broadening from single mode saturation levels – collisional case

We use analytic results for determining     and   : 

Limit near marginal stability3

→  

Limit far from marginal stability4

→  

Resonance-broadened quasilinear formalism can cope with both situations of isolated 
and overlapping modes

3H. L. Berk et al. Plasma Phys. Rep, 23(9), 1997
4H. L. Berk and B. N. Breizman. Phys. Fluids B, 2(9), 1990 

Introduction TAE-EPs Interaction Interaction in Toroidal Geometry LBQ Model Results and Conclusions

Determining the Parameters � and �

We use analytic results for determining � and �.

Limit near marginal stability3 !b � ⌫e↵

!b = 1.18⌫e↵
⇣
�L0��d
�L0

⌘1/4
! � = 1.25

Limit far from marginal stability4 !b ⌧ ⌫e↵

!b = 1.2⌫e↵
⇣
�L0��d

�d

⌘1/3
! � = 1.35

There are no analytic approximation for intermediate values.
Therefore, we use numerical simulation (BOT) to find p.

3H. L. Berk et al. Plasma Phys. Rep, 23(9), 1997
4H. L. Berk and B. N. Breizman. Phys. Fluids B, 2(9), 1990
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Verification: RBQ replicates analytical predictions for mode 
saturation amplitude

• Close to marginal 
stability:

• Far from marginal 
stability:

xb ¼ 1:18!eff
cL " cd

cd

! "1=4

: (13)

While far from marginal stability

xb ¼ 1:2!eff
cL " cd

cd

! "1=3

: (14)

We can use the expression for the saturation levels derived
from the LBQ1D equations to calculate the values of the pa-
rameters r and k. We start with Eq. (10a) for the time evolu-
tion of the distribution function and use the functional form
F ¼ H½ðDX=2Þ2 " ðx" XÞ2&=DX. If the system evolves to
a steady-state, @f/@t! 0, the QL equation becomes

!3
eff þ

p
2

x4
b

DX

! "
@f

@X
¼ !3

eff

@f0
@X

: (15)

The growth rate of the mode ca is written in terms of the ini-
tial linear growth rate cL as

ca ¼ cL
@f=@X
@f0=@X

: (16)

At saturation, cd¼ ca, which is used in Eq. (15) to get the
expression for DX

DX ¼ p
2

x4
b

cd

!3
effðcL " cdÞ

! "
: (17)

We need to determine the parameters r and k for
DX ¼ ½ð2rxbÞp þ ð2k!effÞp&1=p. They are determined by
using the known analytic results for the cases ðca "
cdÞ=cL ( 1 and cd/cL( 1.

In the former case which is the limit very near marginal
stability, the relation !eff)xb holds true and to good
approximation DX ¼ 2k!eff . Using this width in Eq. (17),
the saturation level is equated to the analytically expected
result, Eq. (13), to get

4

p
k

! "1=4

¼ xb
cd

!4
effðcL " cdÞ

! "1=4

¼ 1:18; (18)

which results in k¼ 1.25.
In the latter case, which is the limit far from marginal

stability, xb) !eff. Therefore, to good approximation
DX¼ 2rxb which is used in Eq. (17) and Eq. (14) to get

4

p
r

! "1=3

¼ xb
cd

!3
effðcL " cdÞ

! "1=3

¼ 1:2; (19)

which results in r¼ 1.35.
Yet another problem can be used to test the robustness

of the choice of the parameter sigma. We can ask what is the
value of the needed parameter r for the quasi-linear equa-
tions to replicate the saturation of a single mode when extrin-
sic damping, diffusion, and sources are absent. Numerical
simulation, as first found by Fried et al. in Ref. 14, find
xb/cL¼ 3.2. To obtain this saturation, we find (see

Appendix) that we need r¼ 1.55, a value *12% higher than
what is found for steady state dissipative/diffusive problem
first discussed in this section. This indicates a robustness that
r varies only modestly to obtain best fits for different prob-
lems. However, the variation in predictions of xb for the two
limiting problems (i.e., where 0( cd( cL, !eff finite com-
pared to cd¼ !eff¼ 0) is more pronounced. This is because
the saturation level of xb for this dissipation/source free case
scales as r3 and hence the mode amplitude increases as r6

and the mode energy as r12. Hence, a 10% increase in r
leads to increases of factors of 1.5, 2.25, and 5 in trapping
frequency, mode amplitude, and mode energy, respectively.
Thus, the correlation of the values r for two independent
problems discussed here indicates that the scaling law rules
are qualitatively accurate, but accurate quantitative results
may at times be challenging to achieve. Thus, parameters r
and k may need to be adjusted when looking at different
plasma regimes.

B. Vlasov simulation

Since there is no analytic prediction of the saturation
levels of modes for intermediate values of cd/cL, Vlasov
codes are used to find the value of p that best fits the result-
ing saturation levels from LBQ1D to the numerically
expected results. We use a one-dimensional Vlasov
codes11,12 that solve Eq. (20a) for the distribution function
and Eq. (20b) for the wave

@f

@t
¼ "X

@f

@n
þ 1

2
Cein þ c: cð Þ @f

@X
þ @

@X
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eff
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;

(20a)

d C

dt
¼ "cdCþ 2

ð2p

0

dn
2p

Cein
ð

dX ðf " f0Þ; (20b)

where cd and !eff are both normalized to cL. Since the equa-
tions are periodic in n, both Lilley and Petviashvili solve the
set of equation by expanding f in Fourier series over n, and
they expand f as an integral Fourier transform in X. They
then solve the resulting algebraic equations iteratively. This
results in codes that are very fast, especially compared to
PIC simulations. The noise is extremely low which allows
for best comparison with LBQ1D.

Lilley2 has developed a Vlasov code called BOT which
is available for scientific and educational purposes. BOT is a
Matlab code where the damping rates and effective collisions
are input parameters. BOT also has the capacity to include
drag, but there is no drag in the LBQ code.

BOT uses a spectral method to solve the 1D Vlasov
equations (20a) and the trapezoid method for the mode evo-
lution, Eq. (20b). The major difference between BOT and
LBQ is the phase information, which for certain parameters
exhibit coherent behavior not captured by LBQ. These are
the regimes where a discrepancy between the results of BOT
and LBQ is expected. The results of LBQ1D are compared
to the BOT simulations for the case of isolated modes.

The numerical scheme Lilley uses in solving the Vlasov
equation in BOT is based on a scheme developed by
Breizman and Petviashvili to resolve the fine phase-space
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cL " cd
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While far from marginal stability

xb ¼ 1:2!eff
cL " cd
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: (14)

We can use the expression for the saturation levels derived
from the LBQ1D equations to calculate the values of the pa-
rameters r and k. We start with Eq. (10a) for the time evolu-
tion of the distribution function and use the functional form
F ¼ H½ðDX=2Þ2 " ðx" XÞ2&=DX. If the system evolves to
a steady-state, @f/@t! 0, the QL equation becomes
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The growth rate of the mode ca is written in terms of the ini-
tial linear growth rate cL as

ca ¼ cL
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: (16)

At saturation, cd¼ ca, which is used in Eq. (15) to get the
expression for DX
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We need to determine the parameters r and k for
DX ¼ ½ð2rxbÞp þ ð2k!effÞp&1=p. They are determined by
using the known analytic results for the cases ðca "
cdÞ=cL ( 1 and cd/cL( 1.

In the former case which is the limit very near marginal
stability, the relation !eff)xb holds true and to good
approximation DX ¼ 2k!eff . Using this width in Eq. (17),
the saturation level is equated to the analytically expected
result, Eq. (13), to get
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which results in k¼ 1.25.
In the latter case, which is the limit far from marginal

stability, xb) !eff. Therefore, to good approximation
DX¼ 2rxb which is used in Eq. (17) and Eq. (14) to get
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which results in r¼ 1.35.
Yet another problem can be used to test the robustness

of the choice of the parameter sigma. We can ask what is the
value of the needed parameter r for the quasi-linear equa-
tions to replicate the saturation of a single mode when extrin-
sic damping, diffusion, and sources are absent. Numerical
simulation, as first found by Fried et al. in Ref. 14, find
xb/cL¼ 3.2. To obtain this saturation, we find (see

Appendix) that we need r¼ 1.55, a value *12% higher than
what is found for steady state dissipative/diffusive problem
first discussed in this section. This indicates a robustness that
r varies only modestly to obtain best fits for different prob-
lems. However, the variation in predictions of xb for the two
limiting problems (i.e., where 0( cd( cL, !eff finite com-
pared to cd¼ !eff¼ 0) is more pronounced. This is because
the saturation level of xb for this dissipation/source free case
scales as r3 and hence the mode amplitude increases as r6

and the mode energy as r12. Hence, a 10% increase in r
leads to increases of factors of 1.5, 2.25, and 5 in trapping
frequency, mode amplitude, and mode energy, respectively.
Thus, the correlation of the values r for two independent
problems discussed here indicates that the scaling law rules
are qualitatively accurate, but accurate quantitative results
may at times be challenging to achieve. Thus, parameters r
and k may need to be adjusted when looking at different
plasma regimes.

B. Vlasov simulation

Since there is no analytic prediction of the saturation
levels of modes for intermediate values of cd/cL, Vlasov
codes are used to find the value of p that best fits the result-
ing saturation levels from LBQ1D to the numerically
expected results. We use a one-dimensional Vlasov
codes11,12 that solve Eq. (20a) for the distribution function
and Eq. (20b) for the wave

@f

@t
¼ "X

@f

@n
þ 1

2
Cein þ c: cð Þ @f

@X
þ @

@X
!3

eff

@ðf " f0Þ
@X

;

(20a)

d C

dt
¼ "cdCþ 2

ð2p

0

dn
2p

Cein
ð

dX ðf " f0Þ; (20b)

where cd and !eff are both normalized to cL. Since the equa-
tions are periodic in n, both Lilley and Petviashvili solve the
set of equation by expanding f in Fourier series over n, and
they expand f as an integral Fourier transform in X. They
then solve the resulting algebraic equations iteratively. This
results in codes that are very fast, especially compared to
PIC simulations. The noise is extremely low which allows
for best comparison with LBQ1D.

Lilley2 has developed a Vlasov code called BOT which
is available for scientific and educational purposes. BOT is a
Matlab code where the damping rates and effective collisions
are input parameters. BOT also has the capacity to include
drag, but there is no drag in the LBQ code.

BOT uses a spectral method to solve the 1D Vlasov
equations (20a) and the trapezoid method for the mode evo-
lution, Eq. (20b). The major difference between BOT and
LBQ is the phase information, which for certain parameters
exhibit coherent behavior not captured by LBQ. These are
the regimes where a discrepancy between the results of BOT
and LBQ is expected. The results of LBQ1D are compared
to the BOT simulations for the case of isolated modes.

The numerical scheme Lilley uses in solving the Vlasov
equation in BOT is based on a scheme developed by
Breizman and Petviashvili to resolve the fine phase-space
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We can use the expression for the saturation levels derived
from the LBQ1D equations to calculate the values of the pa-
rameters r and k. We start with Eq. (10a) for the time evolu-
tion of the distribution function and use the functional form
F ¼ H½ðDX=2Þ2 " ðx" XÞ2&=DX. If the system evolves to
a steady-state, @f/@t! 0, the QL equation becomes
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The growth rate of the mode ca is written in terms of the ini-
tial linear growth rate cL as
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At saturation, cd¼ ca, which is used in Eq. (15) to get the
expression for DX
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We need to determine the parameters r and k for
DX ¼ ½ð2rxbÞp þ ð2k!effÞp&1=p. They are determined by
using the known analytic results for the cases ðca "
cdÞ=cL ( 1 and cd/cL( 1.

In the former case which is the limit very near marginal
stability, the relation !eff)xb holds true and to good
approximation DX ¼ 2k!eff . Using this width in Eq. (17),
the saturation level is equated to the analytically expected
result, Eq. (13), to get
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which results in k¼ 1.25.
In the latter case, which is the limit far from marginal

stability, xb) !eff. Therefore, to good approximation
DX¼ 2rxb which is used in Eq. (17) and Eq. (14) to get
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which results in r¼ 1.35.
Yet another problem can be used to test the robustness

of the choice of the parameter sigma. We can ask what is the
value of the needed parameter r for the quasi-linear equa-
tions to replicate the saturation of a single mode when extrin-
sic damping, diffusion, and sources are absent. Numerical
simulation, as first found by Fried et al. in Ref. 14, find
xb/cL¼ 3.2. To obtain this saturation, we find (see

Appendix) that we need r¼ 1.55, a value *12% higher than
what is found for steady state dissipative/diffusive problem
first discussed in this section. This indicates a robustness that
r varies only modestly to obtain best fits for different prob-
lems. However, the variation in predictions of xb for the two
limiting problems (i.e., where 0( cd( cL, !eff finite com-
pared to cd¼ !eff¼ 0) is more pronounced. This is because
the saturation level of xb for this dissipation/source free case
scales as r3 and hence the mode amplitude increases as r6

and the mode energy as r12. Hence, a 10% increase in r
leads to increases of factors of 1.5, 2.25, and 5 in trapping
frequency, mode amplitude, and mode energy, respectively.
Thus, the correlation of the values r for two independent
problems discussed here indicates that the scaling law rules
are qualitatively accurate, but accurate quantitative results
may at times be challenging to achieve. Thus, parameters r
and k may need to be adjusted when looking at different
plasma regimes.

B. Vlasov simulation

Since there is no analytic prediction of the saturation
levels of modes for intermediate values of cd/cL, Vlasov
codes are used to find the value of p that best fits the result-
ing saturation levels from LBQ1D to the numerically
expected results. We use a one-dimensional Vlasov
codes11,12 that solve Eq. (20a) for the distribution function
and Eq. (20b) for the wave
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where cd and !eff are both normalized to cL. Since the equa-
tions are periodic in n, both Lilley and Petviashvili solve the
set of equation by expanding f in Fourier series over n, and
they expand f as an integral Fourier transform in X. They
then solve the resulting algebraic equations iteratively. This
results in codes that are very fast, especially compared to
PIC simulations. The noise is extremely low which allows
for best comparison with LBQ1D.

Lilley2 has developed a Vlasov code called BOT which
is available for scientific and educational purposes. BOT is a
Matlab code where the damping rates and effective collisions
are input parameters. BOT also has the capacity to include
drag, but there is no drag in the LBQ code.

BOT uses a spectral method to solve the 1D Vlasov
equations (20a) and the trapezoid method for the mode evo-
lution, Eq. (20b). The major difference between BOT and
LBQ is the phase information, which for certain parameters
exhibit coherent behavior not captured by LBQ. These are
the regimes where a discrepancy between the results of BOT
and LBQ is expected. The results of LBQ1D are compared
to the BOT simulations for the case of isolated modes.

The numerical scheme Lilley uses in solving the Vlasov
equation in BOT is based on a scheme developed by
Breizman and Petviashvili to resolve the fine phase-space
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We can use the expression for the saturation levels derived
from the LBQ1D equations to calculate the values of the pa-
rameters r and k. We start with Eq. (10a) for the time evolu-
tion of the distribution function and use the functional form
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The growth rate of the mode ca is written in terms of the ini-
tial linear growth rate cL as
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At saturation, cd¼ ca, which is used in Eq. (15) to get the
expression for DX
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We need to determine the parameters r and k for
DX ¼ ½ð2rxbÞp þ ð2k!effÞp&1=p. They are determined by
using the known analytic results for the cases ðca "
cdÞ=cL ( 1 and cd/cL( 1.

In the former case which is the limit very near marginal
stability, the relation !eff)xb holds true and to good
approximation DX ¼ 2k!eff . Using this width in Eq. (17),
the saturation level is equated to the analytically expected
result, Eq. (13), to get
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which results in k¼ 1.25.
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which results in r¼ 1.35.
Yet another problem can be used to test the robustness

of the choice of the parameter sigma. We can ask what is the
value of the needed parameter r for the quasi-linear equa-
tions to replicate the saturation of a single mode when extrin-
sic damping, diffusion, and sources are absent. Numerical
simulation, as first found by Fried et al. in Ref. 14, find
xb/cL¼ 3.2. To obtain this saturation, we find (see

Appendix) that we need r¼ 1.55, a value *12% higher than
what is found for steady state dissipative/diffusive problem
first discussed in this section. This indicates a robustness that
r varies only modestly to obtain best fits for different prob-
lems. However, the variation in predictions of xb for the two
limiting problems (i.e., where 0( cd( cL, !eff finite com-
pared to cd¼ !eff¼ 0) is more pronounced. This is because
the saturation level of xb for this dissipation/source free case
scales as r3 and hence the mode amplitude increases as r6

and the mode energy as r12. Hence, a 10% increase in r
leads to increases of factors of 1.5, 2.25, and 5 in trapping
frequency, mode amplitude, and mode energy, respectively.
Thus, the correlation of the values r for two independent
problems discussed here indicates that the scaling law rules
are qualitatively accurate, but accurate quantitative results
may at times be challenging to achieve. Thus, parameters r
and k may need to be adjusted when looking at different
plasma regimes.

B. Vlasov simulation

Since there is no analytic prediction of the saturation
levels of modes for intermediate values of cd/cL, Vlasov
codes are used to find the value of p that best fits the result-
ing saturation levels from LBQ1D to the numerically
expected results. We use a one-dimensional Vlasov
codes11,12 that solve Eq. (20a) for the distribution function
and Eq. (20b) for the wave
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where cd and !eff are both normalized to cL. Since the equa-
tions are periodic in n, both Lilley and Petviashvili solve the
set of equation by expanding f in Fourier series over n, and
they expand f as an integral Fourier transform in X. They
then solve the resulting algebraic equations iteratively. This
results in codes that are very fast, especially compared to
PIC simulations. The noise is extremely low which allows
for best comparison with LBQ1D.

Lilley2 has developed a Vlasov code called BOT which
is available for scientific and educational purposes. BOT is a
Matlab code where the damping rates and effective collisions
are input parameters. BOT also has the capacity to include
drag, but there is no drag in the LBQ code.

BOT uses a spectral method to solve the 1D Vlasov
equations (20a) and the trapezoid method for the mode evo-
lution, Eq. (20b). The major difference between BOT and
LBQ is the phase information, which for certain parameters
exhibit coherent behavior not captured by LBQ. These are
the regimes where a discrepancy between the results of BOT
and LBQ is expected. The results of LBQ1D are compared
to the BOT simulations for the case of isolated modes.

The numerical scheme Lilley uses in solving the Vlasov
equation in BOT is based on a scheme developed by
Breizman and Petviashvili to resolve the fine phase-space
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• Undamped case

Collisionless case Collisional cases

Grid optimization of the RBQ1D for resonance island iterations

The intention is to absorb the angle-dependent Jacobian into the variable of integration. The new variable

is

´
dQ/

p
cosQ+ 1 + ✏, which analytically is given by

Y (Q, ✏) =
2F

⇣
Q
2 ,

2
2+✏

⌘

p
2 + ✏

where F (�, k) =
´ �
0 dt(1 � k sin2 t)�1/2

is an elliptic function. A small parameter ✏ is included to prevent

discontinuities associated with the infinite period at the separatrix.

Figure 1: plot for Y vs Q

The fundamental quantity that characterizes the dynamics around a resonance and is evolved in RBQ

is the bounce (trapping) frequency. The choice for Y ensures that equal segments �Y give the same

contribution to the bounce period, for the case of uniform mode structure. In order to evaluate EllipticF,

we use GNU’s F (�, k) =
´ �
0 dt/

q
1� k

2 sin2(t). To use this function, the header file gsl_sf_ellint.h needs

to be declared and the module gsl needs to be loaded. Note that the definition of the elliptic function in

GSL is different from the one in Mathematica (the factor that multiplies sin

2
is k in Mathematica and k

2

in GSL).

Since we desire to work with an equidistant grid in the Y variable, we need to employ a root find method

to be able to know what values of (or grid in) Q correspond to the equidistant Y grid. Since Y (our grid

variable) is a monotonic function of Q, the Newton’s method appears to be enough. A catch is that the

initial guess on Q should be ⇡ otherwise the root may not be found.

!b
⇠= 3.2�L

1

Definitions: initial linear growth rate     , mode damping rate      and trapping (bounce) 
frequency      (proportional to square root of mode amplitude)

Figure 2: Plot of island in P' vs the phase Q. The dots represent arcs in Q with equal spacing in the

variable Y .
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Expected saturation levels from analytic theory are shown by   
DIII-D Friday Science Meeting, April 19th, 2019 Vinícius Duarte, “Realistic 2D quasilinear modeling of fast ion relaxation” 9



Verification: analytical collisional mode evolution near 
threshold

• Near marginal stability, the wave amplitude 
evolution is governed by [Berk, Breizman and 
Pekker, PRL 1996]

• An approximate analytical solution is found when                                 
: [Duarte & Gorelenkov, NF 2019]

is a resonance-averaged 
collisional contribution evaluated by NOVA-K
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Analytical nonlinear collisional dynamics of near-threshold eigenmodes

V. N. Duarte⇤ and N. N. Gorelenkov
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, 08543, USA

A closed-form analytical solution is found for the nonlinear dynamics of isolated, near-threshold
waves in the presence of strong scattering. The proposed solution can be useful in verifying codes
across several disciplines, including Alfvénic instabilities and thermal plasma turbulence in fusion
plasmas and studies of viscous shear flows in fluid dynamics, as well as a rapid means for predicting
and analyzing experimental outcome.

The obtention of reliable bounds for the nonlin-
ear instability of waves is an outstanding problem
in kinetic systems of fusion interest [1, 2]. The
burning plasma sustainment in ITER imposes se-
vere constraints on the amount of fast ions ejected
through their resonant interaction with Alfvénic
waves [3]. Therefore, procedures to anticipate
the nonlinear evolution of waves destabilized by
the sub-population of highly energetic particles are
needed for establishing limits for wave growth in
ITER as well as in present tokamaks. In this let-
ter, we derive an analytical expression for nonlinear
wave evolution in the presence of strong scattering
that can be a rapid means for experimental predic-
tion and interpretation, as well as for the verifica-
tion of codes.

The nonlinear dynamics of a non-overlapping
wave near marginal stability has been found to
be governed by a universal1 time-delayed, integro-
differential cubic equation which, in the presence of
diffusive processes, reads [6, 7]

dA(t)
dt

= A(t)� 1
2

´
d�H

n´
t/2
0 dzz

2
A(t� z)⇥

⇥ ´ t�2z
0 dye

�⌫̂

3
effz

2(2z/3+y)
A(t� z � y)A

⇤
(t� 2z � y)

o

(1)
where ⌫̂

eff

represents the effective scattering fre-
quency ⌫

eff

normalized with �

L

� �

d

(�
L

is the
linear growth rate in the absence of damping and

⇤
vduarte@pppl.gov

1
The same equation can be recovered for the evolution of a

mode in a turbulent plasma under a geometric optics ap-

proximation, i.e., when the turbulent modes can be treated

as quasi-particles [4]. A time-delayed, cubic equation of

the same structure was also found in studies of critical

layers in shear fluid flows [5].

�

d

is the sum of a wave background damping rates
due to several mechanisms). Time is also normal-
ized with �

L

� �

d

. ⌫̂

eff

is an effective frequency
due a combination of stochastic processes experi-
enced by the resonant population, e.g., collisional
pitch-angle scattering, collisionless turbulent scat-
tering and diffusion due to RF heating waves. The
normalized amplitude is A = !

2
b

�

1/2
L

(�

L

� �

d

)

�5/2,
where !

b

is the bounce (or trapping) frequency of
the most deeply trapped resonant particles2. d� is a
phase-space volume element and H is a phase-space
weighting defined in [8, 9].

Previous numerical analysis for Alfvénic modes in
DIII-D, NSTX and TFTR [9, 10] have shown that
the phase average, over multiple mode resonance
surfaces, leads to typical effective collisional scatter-
ing frequency of order 10

3
s

�1 to 10

4
s

�1. Anoma-
lous scattering [11] as well as diffusion due to ra-
diofrequency heating [12] contribute to increase the
effective scattering rate. The net growth rate is
typically of order of up to a percent of the wave
frequency (the frequecy of toroidicity-induced and
reversed-shear Alfvénic eigenmodes is typically of
order 10

5
s

�1). Therefore, regimes with ⌫̂

eff

� 1

are relevant for experiments, especially when the
modes are close to threshold and when diffusive
mechanisms, in addition to collisions, are taken into

2
For a simplified bump-on-tail electrostatic case, !b is given

by

p
eEk/m with e, k and m being the resonant parti-

cle electric charge, the absolute value of the wave number

vector and the resonant particle mass. For a more realis-

tic toroidal configuration, !b is given by eq. 9 of [8]. We

note that if our results are to be compared with the ones

of Ref. [8], our amplitude would need to be divided by

a factor

p
2, since that reference used a slightly modified

normalization.
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show fair agreement for regions of parameters where
RBQ does not admit intermittent solutions.

If collisionality is moderate, we note that an am-
plitude overshoot occurs following the linear phase,
as can be seen from Fig. 1(a). This can lead to in-
stantaneous wide resonance islands (the resonance
width is roughly proportional to !

b

[20] and there-
fore proportional to

p
A). The overshoot can be

several times the saturated amplitude, as shown
in [21]. This may lead to instantaneous overlap
of distinct resonances and invalidate/breaks down
the analysis within the cubic equation framework.
Therefore, for purposes of code verification, the ex-
pression 3 applies when collisions are high enough
to ensure a monotonic saturation, in addition to the
near threshold regime. As a final remark, we point
out that higher-order nonlinear effects not consid-

ered in this work, such as MHD nonlinearities [22]
and wave-wave coupling [23, 24] can establish fur-
ther bounds on the saturation level.
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Verification of RBQ vs analytical solution for mode evolution
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RBQ

γd =0.97γL ,0, νeff=0.3γL ,0

(Berk, Breizman, Pekker, PPR 1997)

(Duarte & Gorelenkov, NF 2019)
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Verification of RBQ runs for the collisional evolution of an 
Alfvénic wave

Resonance
broadening

Mode
structure

DIII-D discharge 159243

Idealized bump-
on-tail scaling:

1

a

b

b = 3.1

A(t) =
A(0)etp

1� gA2(0) (1� e2t)
(1)

g ⌘ ´ d�H�(1/3)
6⌫̂4

eff

�
3
2

�1/3.
�B✓/B = ⌫2eff

Gorelenkov et al, PoP (submitted)

RBQ1D code structure Rigorous verifications are undertaken

III. RBQ verification via Coulomb collisions

Global n= 6 TAE saturates over ⇠msec RBQ shows dBq /B µ n1.65
e↵

0.2 0.4 0.6 0.8 1.0

0

0

1.0

ψ /ψθ θ1(           )
1/2

n=6

23

22

20

m=21

TAE amplitude scales with fast ion Coulomb scattering frequency, dBq /B ⇠ n2
e↵ ⇠ n2/3

? , where n3
e↵ = n?

��� ∂⌦
∂ c

���
2

(Berk et al.,Phys. Fluids B’90).
Dirichlet boundary conditions, fh (ȳq ! 0) = const and fh (ȳq ! 1) = 0, are required to account for Coulomb
scattering.

Intermittency (fluctuations in losses) is expected in predictive RBQ simulations!!

N.N. Gorelenkov et.al. RBQ model 15 / 21
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RBQ results for single mode shows 
predator-prey-like mode evolution

Absence of sources leads to 
mode decay (currently being 
addressed in the 2D version)

Eigenstructure limits the resonance width
(White et al, PoP 2018)

RSAE

doubling the collisionality

At low amplitude, scattering collisions build up the gradient inside 
the resonanceàpeaks are sharper than the troughs

Interplay between mode drive, background damping and collisions

DIII-D Friday Science Meeting, April 19th, 2019 Vinícius Duarte, “Realistic 2D quasilinear modeling of fast ion relaxation” 13



Outline

• The Resonance Broaded Quasilinear (RBQ) model 

• RBQ1D verification exercises

• RBQ interfacing with TRANSP

• Ongoing extension to 2D
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RBQ is interfaced with TRANSP: multi-mode case

Figure 3. A CO2 interferometer power spectra for DIII-D shot #159243 during the current ramp
with 6.5MW NBI. The spectrum shows multiple sweeping frequency Alfvénic modes. (The Figure
is reproduced from Ref.[17])

and that any particle reaching the plasma center returns back to the plasma which implies

that the Neumann BC has to be enforced in the center. The Neumann boundary conditions

in the present RBQ version applied for first two points on the P' grid. If the resonances of

the modes extend to the center (which we found in simulations) without sources the number

of particles in the central region goes down. This also means that the growth rates can

not recover their initial values. That is why the Dirichlet BC is used, as discussed in the

Appendix B.

B. RBQ1D simulations

The relaxation of the fast ion distribution in the velocity space is simulated for DIII-D

plasma studied in a dedicated experiments with the tangential injection geometry[16, 17].

The same experiments were studied in earlier our paper [4]. One particular aspect to point

out here is that the fast ion profiles exhibited the resiliency, remain mainly unchanged, to

the modifications of the beam injection geometry or power. Measured power spectrum of

AE modes increased with the NBI power above EP threshols level.

In the chosen DIII-D discharge, #159243, the NBI power was 6.4MW and was increased

linearly prior to the time of the analysis which is t = 805msec. The discharge had a reversed

shear magnetic safety factor profile and its minimum value turns lower than qmin = 3 at the

time of interest. The spectrogram is shown in Fig. (3).

An unexpected hollow profile of beam ions was measured using the Fast Ion D↵ (FIDA)

10

DIII-D shot 159243
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Figure 5. Fast ion distribution function as simulated by TRANSP at t = 805msec in DIII-D shot
#159243 using velocity space diffusion provided by RBQ1D code, kick model or ignoring it (classical,
(b)). Figure (a) shows the pitch angle averaged DF velocity dependence.

The set of PDFs is used then within TRANSP NUBEAM package [21] to prescribe the

fast ion diffusion. The distribution function is computed then using the same Monte Carlo

package as TRANSP does for the kick model computed diffusion. As a result, TRANSP

computes the distribution function for further incorporation into the plasma analysis. For

the multi-modecase analysed here the same procedure was implemented and the results are

shown in figures 5. The distribution function is computed integrating its values from ✓ = �⇡

to ✓ = ⇡. Then the averaging is performed using a Gaussian function centerd at ⇢ = 0.5

and its width value 0.3.

The distribution shown here includes effects of all modes evolved selfconsistently within

RBQ1D simulations whereas previously [4] we showed them using only one RSAE mode

localized near the qmin surface. Multiple modes inflict more fast ion transport in comparison

with the single mode case as expected (c.f. Fig.4 (a) of Ref.[4]).

Finally, TRANSP provides the results which are show in Fig. 6. Here the diffusion rates

were kept constant, i.e. no amplitude modulation of AEs was prescribed. Visible oscillations

in the neutron rate dependence vs. time are due to the modulation of the injection power.

Another feature reproduced by the RBQ1D code is the hollow beam ion density profile,

Fig. 6 (b). In both cases, kick and RBQ1D, the beam ion density profiles are hollow. This

is the feature which was not seen in the critical gradient model simulations [4], but is found

readily in the RBQ1D runs. Consistent with the previous study this feature is due to strong

12

Distribution at 805ms

11 unstable Alfvénic modes at 805ms
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Outline

• The Resonance Broaded Quasilinear (RBQ) model 

• RBQ1D verification exercises

• RBQ interfacing with TRANSP

• Ongoing extension to 2D
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Current work is aligned with milestones for ISEP SCiDAC
“Formulate RBQ2D approach for full resolution in velocity. Use NOVA-K interface for 
single modes. Implement slanted phase space diffusion. Apply RBQ1D for VV with 
velocity space resolution.”
• Alternating direction implicit (ADI) slanted scheme being implemented: 

reduction of the computation time (McKee et al, J. Comp. Phys. 1996)

• Challenge: non-rectangular domain due to loss boundary
• Burning plasma modeling will be computationally expensive
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The scheme is unconditionally stable. The accuracy of the method can be improved from O (�t+ �P' + �E)
to O �

�t+ �P 2
' + �E2

�
by taking (second-order) upwinding derivatives for the convective terms in the form

? ]

Podestà, NF 2016
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Verification of the 2D diffusion scheme against analytic prediction
Numerical distribution function:
unconditionally stable

Relative error does not accumulate

DIII-D Friday Science Meeting, April 19th, 2019 Vinícius Duarte, “Realistic 2D quasilinear modeling of fast ion relaxation” 18



Scaling laws for numerical error
Grid spacing dependence Time stepping dependence

DIII-D Friday Science Meeting, April 19th, 
2019
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Future verifications:
• change diffusion directions to verify against known analytic solutions;
• include multiple modes;
• explore diffusion paths in the presence of overlap;



Summary

• RBQ1D addresses both isolated and overlapping resonances
• oscillating and quasi-steady evolutions are recovered 
• RBQ1D is verified against known analytical solution in limiting cases
• integration with TRANSP allows whole-device reduced modeling, which 

captures hollow profiles
• Ongoing work: full 2D multi-mode resonant dynamics (with strong V&V 

exercises)
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